Electromagnetophoresis of a Colloidal Sphere in a Spherical Cavity
نویسندگان
چکیده
The quasi-steady electromagnetophoretic motion of a spherical colloidal particle positioned at the center of a spherical cavity filled with a conducting fluid is analyzed at low Reynolds number. Under uniformly applied electric and magnetic fields, the electric current and magnetic flux density distributions are solved for the particle and fluid phases of arbitrary electric conductivities and magnetic permeabilities. Applying a generalized reciprocal theorem to the Stokes equations modified with the resulted Lorentz force density and considering the contribution of the magnetic Maxwell stress to the force exerted on the particle, which turns out to be important, we obtain a closed-form formula for the migration velocity of the particle valid for an arbitrary value of the particle-to-cavity radius ratio. The particle velocity in general decreases monotonically with an increase in this radius ratio, with an exception for the case of a particle with high electric conductivity and low magnetic permeability relative to the suspending fluid. The asymptotic behaviors of the boundary effect on the electromagnetophoretic force and mobility of the confined particle at small and large radius ratios are discussed.
منابع مشابه
Spherical Oil Agglomeration (SOA)/ Colloidal Gas Aphrons (CGA) Flotation
The main aim of this experimental work was to develop a separation process using micro- bubbles less than 100 µm in diameter. Micro-agglomerates were produced using 10kg crude oil/tone feed coal treated compared to 250 kg/tone feed coal treated for conventional spherical oil agglomeration. These micro-agglomerates were separated from the unagglomerated minerals by micro-bubble flotation. Colloi...
متن کاملRegression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملPhase coexistence in polydisperse mixture of hard-sphere colloidal and flexible chain particles
Abstract. A theoretical scheme for the calculation of the full phase diagram (including cloud and shadow curves, binodals and distribution functions of the coexisting phases) for colloidpolymer mixtures with polymer chain length polydispersity and hard-sphere colloidal and polymeric monomer sizes polydispersity is proposed. The scheme combines thermodynamic perturbation theory for associating f...
متن کاملEffect of Permeabilities on the Translational Motion of a Spherical Particle with Porous Core in a Concentric Spherical Cavity
An analytical investigation for the creeping motion of a spherically symmetric fluid-permeable composite sphere composed by a uniform porous core and a uniformly surrounded porous shell located at the center of a spherical cavity filled with an incompressible Newtonian fluid is presented here. In the limit of small Reynolds number, the Stokes and Brinkman equations are solved for the flow field...
متن کاملEffect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique
A semi-analytical iterative method as one of the newest analytical methods is used for the elastic analysis of thick-walled spherical pressure vessels made of functionally graded materials subjected to internal pressure. This method is accurate, fast and has a reasonable order of convergence. It is assumed that material properties except Poisson’s ratio are graded through the thickness directio...
متن کامل